Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
C R Biol ; 346: 45-54, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37254742

RESUMO

The successful sexual reproduction of flowering plants depends upon double fertilisation, during which pollen grains, produced within the male floral organ (the anther) deliver two sperm cells to the ovule, buried deep within the ovary, triggering the development of the embryo and the surrounding tissues of the seed. Although much attention has been given to pollen and embryo development, less has been focused on the supporting tissues surrounding these organisms as they develop, the tapetum and the endosperm. Intriguingly, despite their very different origins, these tissues appear to have converged functionally and developmentally. Here we will discuss this apparent convergence and its molecular and physiological basis.


Le succès de la reproduction des plantes à fleurs réside en la double fécondation, un processus au cours duquel les grains de pollen, produits à l'intérieur des pièces florales males (anthères), apportent 2 cellules spermatiques à l'ovule, enfouie profondément au sein de l'ovaire, déclenchant ainsi le développement de l'embryon et des tissus environnants de la graine. Bien qu'une attention particulière a été accordée au développement du grain de pollen et de l'embryon, les tissus qui les entourent et qui soutiennent leurs développements, respectivement le tapis et l'albumen, ont fait l'objet d'une attention moindre. De manière intrigante, ces tissus semblent avoir convergé au niveau de leur fonction et de leur développement malgré leurs origines très différentes. Nous disserterons ici les bases moléculaires et physiologiques de cette convergence apparente.


Assuntos
Magnoliopsida , Sementes , Sementes/genética , Magnoliopsida/genética , Reprodução/fisiologia , Células Germinativas , Desenvolvimento Embrionário , Flores
2.
Development ; 149(22)2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36305487

RESUMO

During flowering plant reproduction, anthers produce pollen grains, the development of which is supported by the tapetum, a nourishing maternal tissue that also contributes non-cell-autonomously to the pollen wall, the resistant external layer on the pollen surface. How the anther restricts movement of the tapetum-derived pollen wall components, while allowing metabolites such as sugars and amino acids to reach the developing pollen, remains unknown. Here, we show experimentally that in arabidopsis thaliana the tapetum and developing pollen are symplastically isolated from each other, and from other sporophytic tissues, from meiosis onwards. We show that the peritapetal strip, an apoplastic structure, separates the tapetum and the pollen grains from other anther cell layers and can prevent the apoplastic diffusion of fluorescent proteins, again from meiosis onwards. The formation and selective barrier functions of the peritapetal strip require two NADPH oxidases, RBOHE and RBOHC, which play a key role in pollen formation. Our results suggest that, together with symplastic isolation, gating of the apoplast around the tapetum may help generate metabolically distinct anther compartments.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Flores , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pólen/metabolismo , Reprodução , Regulação da Expressão Gênica de Plantas
4.
Proc Natl Acad Sci U S A ; 119(22): e2201446119, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35609199

RESUMO

The surface of pollen grains is reinforced by pollen wall components produced noncell autonomously by tapetum cells that surround developing pollen within the male floral organ, the anther. Here, we show that tapetum activity is regulated by the GASSHO (GSO) receptor-like kinase pathway, controlled by two sulfated peptides, CASPARIAN STRIP INTEGRITY FACTOR 3 (CIF3) and CIF4, the precursors of which are expressed in the tapetum itself. Coordination of tapetum activity with pollen grain development depends on the action of subtilases, including AtSBT5.4, which are produced stage specifically by developing pollen grains. Tapetum-derived CIF precursors are processed by subtilases, triggering GSO-dependent tapetum activation. We show that the GSO receptors act from the middle layer, a tissue surrounding the tapetum and developing pollen. Three concentrically organized cell types, therefore, cooperate to coordinate pollen wall deposition through a multilateral molecular dialogue.


Assuntos
Flores , Pólen , Regulação da Expressão Gênica de Plantas , Peptídeos/metabolismo , Pólen/metabolismo
5.
Nature ; 589(7840): 116-119, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33208947

RESUMO

The regulation of signalling capacity, combined with the spatiotemporal distribution of developmental signals themselves, is pivotal in setting developmental responses in both plants and animals1. The hormone auxin is a key signal for plant growth and development that acts through the AUXIN RESPONSE FACTOR (ARF) transcription factors2-4. A subset of these, the conserved class A ARFs5, are transcriptional activators of auxin-responsive target genes that are essential for regulating auxin signalling throughout the plant lifecycle2,3. Although class A ARFs have tissue-specific expression patterns, how their expression is regulated is unknown. Here we show, by investigating chromatin modifications and accessibility, that loci encoding these proteins are constitutively open for transcription. Through yeast one-hybrid screening, we identify the transcriptional regulators of the genes encoding class A ARFs from Arabidopsis thaliana and demonstrate that each gene is controlled by specific sets of transcriptional regulators. Transient transformation assays and expression analyses in mutants reveal that, in planta, the majority of these regulators repress the transcription of genes encoding class A ARFs. These observations support a scenario in which the default configuration of open chromatin enables a network of transcriptional repressors to regulate expression levels of class A ARF proteins and modulate auxin signalling output throughout development.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Regulação para Baixo , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Ácidos Indolacéticos/metabolismo , Proteínas Repressoras/metabolismo , Transcrição Gênica , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina/genética , Cromatina/metabolismo , Genes de Plantas/genética , Mutação , Proteínas Repressoras/genética , Técnicas do Sistema de Duplo-Híbrido
7.
Science ; 362(6421): 1407-1410, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30573626

RESUMO

Plants adapt to heterogeneous soil conditions by altering their root architecture. For example, roots branch when in contact with water by using the hydropatterning response. We report that hydropatterning is dependent on auxin response factor ARF7. This transcription factor induces asymmetric expression of its target gene LBD16 in lateral root founder cells. This differential expression pattern is regulated by posttranslational modification of ARF7 with the small ubiquitin-like modifier (SUMO) protein. SUMOylation negatively regulates ARF7 DNA binding activity. ARF7 SUMOylation is required to recruit the Aux/IAA (indole-3-acetic acid) repressor protein IAA3. Blocking ARF7 SUMOylation disrupts IAA3 recruitment and hydropatterning. We conclude that SUMO-dependent regulation of auxin response controls root branching pattern in response to water availability.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Sumoilação , Fatores de Transcrição/metabolismo , Água/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , DNA de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Proteínas Nucleares/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Ligação Proteica , Proteína SUMO-1/metabolismo
8.
Nat Commun ; 9(1): 1818, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29720582

RESUMO

The original version of this Article omitted the following from the Acknowledgements: 'We also thank DBT-CREST BT/HRD/03/01/2002.' This has been corrected in both the PDF and HTML versions of the Article.

9.
Nat Commun ; 9(1): 1409, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29651114

RESUMO

Phosphate (P) is an essential macronutrient for plant growth. Roots employ adaptive mechanisms to forage for P in soil. Root hair elongation is particularly important since P is immobile. Here we report that auxin plays a critical role promoting root hair growth in Arabidopsis in response to low external P. Mutants disrupting auxin synthesis (taa1) and transport (aux1) attenuate the low P root hair response. Conversely, targeting AUX1 expression in lateral root cap and epidermal cells rescues this low P response in aux1. Hence auxin transport from the root apex to differentiation zone promotes auxin-dependent hair response to low P. Low external P results in induction of root hair expressed auxin-inducible transcription factors ARF19, RSL2, and RSL4. Mutants lacking these genes disrupt the low P root hair response. We conclude auxin synthesis, transport and response pathway components play critical roles regulating this low P root adaptive response.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas , Organogênese Vegetal/efeitos dos fármacos , Fosfatos/farmacologia , Raízes de Plantas/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Gravitropismo/fisiologia , Ácidos Indolacéticos/metabolismo , Organogênese Vegetal/genética , Fosfatos/deficiência , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Estresse Fisiológico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Curr Opin Plant Biol ; 41: 83-88, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29073502

RESUMO

Plants are characterized by their ability to produce new organs post-embryonically throughout their entire life cycle. In particular development of all above-ground organs relies almost entirely on the function of the shoot apical meristem (SAM). The SAM performs a dual role by maintaining a pool of undifferentiated cells and simultaneously driving cell differentiation to initiate organogenesis. Both processes require strict coordination between individual cells which leads to formation of reproducible morphological and molecular patterns within SAM. The patterns are formed and maintained in large part due to spatio-temporal variation in signaling of plant hormones auxin and cytokinin resulting in tissue-specific transcriptional regulation. Integration of these mechanisms into computational models further identifies the key regulatory interactions involved in SAM function.


Assuntos
Regulação da Expressão Gênica de Plantas , Desenvolvimento Vegetal , Reguladores de Crescimento de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Plantas/genética , Transdução de Sinais , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Especificidade de Órgãos , Brotos de Planta/genética
11.
Mol Plant Microbe Interact ; 26(8): 850-60, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23594348

RESUMO

Verticillium longisporum is a vascular pathogen that infects the Brassicaceae host plants Arabidopsis thaliana and Brassica napus. The soilborne fungus enters the plant via the roots and colonizes the xylem of roots, stems, and leaves. During late stages of infections, Verticillium spp. spread into senescing tissue and switch from biotrophic to a necrotrophic life style. Typical symptoms of V. longisporum-induced disease are stunted growth and leaf chlorosis. Expression analyses of the senescence marker genes SENESCENCE-ASSOCIATED GENE12, SENESCENCE-ASSOCIATED GENE13, and WRKY53 revealed that the observed chlorosis is a consequence of premature senescence triggered by Verticillium infection. Our analyses show that, concomitant with the development of chlorosis, levels of trans-zeatin decrease in infected plants. Potentially, induction of cytokinin oxidase/dehydrogenase expression by Verticillium infection contributes to the observed decreases in cytokinin levels. Stabilization of Arabidopsis cytokinin levels by both pharmacological and genetic approaches inhibits Verticillium proliferation and coincides with reduced disease symptom development. In summary, our results indicate that V. longisporum triggers premature plant senescence for efficient host plant colonization.


Assuntos
Arabidopsis/metabolismo , Arabidopsis/microbiologia , Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Doenças das Plantas/microbiologia , Verticillium/fisiologia , Adenina/análogos & derivados , Adenina/farmacologia , Citocininas/genética , DNA Fúngico/isolamento & purificação , DNA Fúngico/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Fatores de Tempo
12.
Plant Cell ; 24(9): 3823-37, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23023171

RESUMO

The soilborne fungal plant pathogen Verticillium longisporum invades the roots of its Brassicaceae hosts and proliferates in the plant vascular system. Typical aboveground symptoms of Verticillium infection on Brassica napus and Arabidopsis thaliana are stunted growth, vein clearing, and leaf chloroses. Here, we provide evidence that vein clearing is caused by pathogen-induced transdifferentiation of chloroplast-containing bundle sheath cells to functional xylem elements. In addition, our findings suggest that reinitiation of cambial activity and transdifferentiation of xylem parenchyma cells results in xylem hyperplasia within the vasculature of Arabidopsis leaves, hypocotyls, and roots. The observed de novo xylem formation correlates with Verticillium-induced expression of the VASCULAR-RELATED NAC DOMAIN (VND) transcription factor gene VND7. Transgenic Arabidopsis plants expressing the chimeric repressor VND7-SRDX under control of a Verticillium infection-responsive promoter exhibit reduced de novo xylem formation. Interestingly, infected Arabidopsis wild-type plants show higher drought stress tolerance compared with noninfected plants, whereas this effect is attenuated by suppression of VND7 activity. Together, our results suggest that V. longisporum triggers a tissue-specific developmental plant program that compensates for compromised water transport and enhances the water storage capacity of infected Brassicaceae host plants. In conclusion, we provide evidence that this natural plant-fungus pathosystem has conditionally mutualistic features.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Brassica napus/fisiologia , Doenças das Plantas/microbiologia , Verticillium/fisiologia , Xilema/fisiologia , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Brassica napus/citologia , Brassica napus/genética , Brassica napus/microbiologia , Diferenciação Celular , Secas , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Especificidade de Órgãos , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Folhas de Planta/fisiologia , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Feixe Vascular de Plantas/citologia , Feixe Vascular de Plantas/genética , Feixe Vascular de Plantas/microbiologia , Feixe Vascular de Plantas/fisiologia , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão , Estresse Fisiológico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Água/metabolismo , Xilema/citologia , Xilema/genética , Xilema/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...